
A Unified Specification Mining Framework for Smart Contracts
Ye Liu

li0003ye@e.ntu.edu.sg
Nanyang Technological University

Singapore

ABSTRACT
Smart contracts are self-governed computer programs that run on
blockchain to facilitate asset transfer between users within a trust-
less environment. The absence of contract specifications hinders
routine tasks, such as program understanding, debugging, testing,
and verification of smart contracts. In this work, we propose a
unified specification mining framework to infer specification mod-
els from past transaction histories. These include access control
models describing high-level authorization rules, program invari-
ants capturing low-level program semantics, and behavior models
characterizing interaction patterns allowed by contract implemen-
tations. The extracted specification models can be used to perform
conformance checking on smart contracts, with the goal of elimi-
nating unforeseen contract quality issues.

CCS CONCEPTS
• Software and its engineering → Software reverse engineer-
ing.

KEYWORDS
Smart contract, specification mining.
ACM Reference Format:
Ye Liu. 2022. A Unified Specification Mining Framework for Smart Con-
tracts. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3551349.3559512

1 INTRODUCTION
Blockchain is a distributed ledger technology, which is maintained
and shared by a peer-to-peer (P2P) network. Blockchain was first
introduced by Bitcoin [22] and then evolves on Ethereum [30] to
support smart contract execution. Smart contracts are developed to
facilitate digital asset transfer between users without a centralized
authority and they are usually written in a Turing complete pro-
gramming language such as Solidity [27]. Smart contracts have em-
powered a wide range of applications such as decentralized finance,
games, NFT art markets, and so on. As of July 2022, there are more
than 50 millions smart contracts deployed on Ethereum, enabling
4,073 DApps with 54.85k daily users [2, 4]. Since the notorious DAO
attack [26] in 2016, smart contract security has always been the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3559512

research focus. Although many approaches [11, 13, 20, 21] have
been proposed to secure smart contract, it remains a big challenge
to ensure the correctness with the absence of contract specification.

Smart contracts are often developed in a rather undisciplined
way. To protect assets, smart contracts tend to restrict user access
by the enforcement of access control. However, Durieux et al. [9]
reported that nearly 10% smart contracts may contain access con-
trol vulnerabilities. ERC20 [1] is the most popular kind of smart
contracts on Ethereum but 13% ERC20 token contracts do not con-
form to the ERC20 standard semantics [8]. Moreover, Qin et al. [24]
demonstrated how behavior models can be exploited to attack the
DeFi ecosystem with flash loans. Contract specification plays a
central role in describing, understanding, reasoning about smart
contract behaviors, and detecting, through testing and verification,
nonconformances such as correctness bugs and security violations.

There are a large body of works on specification mining. Ernst
et al. [10] implemented Daikon [3] to automatically infer likely
program invariants. Further, GK-tail [19] can automatically gener-
ate extended finite state machines (EFSMs) as software behavior
models from runtime traces. Moreover, Iyer and Masoumzadeh [12]
proposed an algorithm for mining attribute-based access control
(ABAC) policies, discovering both positive and negative authoriza-
tion rules simultaneously. However, there does not exist a general
framework to guide the specification mining of smart contracts.

To address this problem, we propose a unified specification min-
ing framework for smart contracts. We discuss the static artefacts
and dynamic artefacts from smart contracts and its transaction his-
tory. From these artefacts, then, three different specification mining
techniques: (1) role mining, (2) automata learning, and (3) invariant
detection, are used to generate access control model, behavior model,
and program invariant, respectively. Role-based access control [25]
has been recommended by Openzeppelin [5] as the permission
management paradigm for smart contract development. The mined
access control models can be used to find permission bugs in smart
contract implementations [16]. Program invariant are properties
that must be preserved through the program execution. Program
invariant can be used for fuzzing [28], verification [18, 23], and run-
time validation [14]. Behavior model characterizes the interaction
patterns allowed or expected by smart contract implementations.
The behavior models can be used for conformance testing [17, 29].

2 APPROACH
2.1 Overview
Figure 1 overviews the proposed unified specification mining frame-
work for smart contracts. The framework takes smart contracts and
its transaction history as the input to generate static artefacts and
dynamic artefacts. The static artefacts are minimal which include
the application binary interface (ABI) specifications and contract

https://orcid.org/0000-0001-6709-3721
https://doi.org/10.1145/3551349.3559512
https://doi.org/10.1145/3551349.3559512

ASE ’22, October 10–14, 2022, Rochester, MI, USA Ye Liu

Smart
Contract

ABI
specification

Storage
layout
specification

Users

API calls

Execution
traces

Invariants

Behavior model

Transaction
history

Dynamic artefactsStatic artefacts

Access control model
Role mining

Automata
learning

Invariant
detection

Engines

Contract
specification

Figure 1: A unified specification mining framework.
storage layout specifications [27]. The dynamic artefacts include
users, API calls and execution traces. Note that users follow the ABI
specifications to call smart contract API which are public ABI func-
tions, and the execution of API calls would modify contract state
variables, thus contributing to a set of execution traces. Next, speci-
fication mining engine ensembles three techniques: (1) role mining,
(2) automata learning, and (3) invariant detection to infer access
control model, behavior model, and program invariant respectively
and these will be outputted as the likely contract specifications.

2.2 Role Mining
Role mining mainly aims to address role engineering or role identi-
fication problem in applying RBAC and it discovers a set of roles
from existing user access log that reflects user permission assign-
ment. Most existing role mining techniques assume a complete
user access log that contains all permissions assigned to each user.
However, transaction histories of smart contracts are limited and
treating it as a source of a fully-observed permission assignment
will likely result in more roles than necessary and incorrect role as-
signments. In this section, we introduce the partial-observation role
mining problem (PORM), where the given permission assignment is
assumed to contain only partial information.

Definition 2.1 (PORM Optimization Problem). Given a set of users
𝑈 of size𝑚, a set of permissions P of size 𝑛, and a user-permission
assignment matrix UPA of size𝑚×𝑛, PORM is to infer the unknown
RBAC configuration (UA, PA), where R is a set of roles of size 𝑘 ,
UA is a user-role assignment matrix of size 𝑚 × 𝑘 , and PA is a
permission-role assignment matrix of size 𝑘 × 𝑛, which satisfies,

min 𝛼 · max
𝑟𝑖 ,𝑟 𝑗 ∈𝑅

cos
(
AFV (𝑟𝑖),AFV (𝑟 𝑗)

)
+ 𝛽 · | |UA ⊗ PA − UPA| |1

| |UA ⊗ PA| |1
,

s.t. UA ⊗ PA ⊇ UPA, (1)

where 𝛼 and 𝛽 are relative weights on the two error metrics and
𝐴𝐹𝑉 is the role average access frequency vector proposed in [16].

2.3 Automata Learning
Contract behaviors can be modeled by a labeled state transition
system [6]. A contract state transitions to another state due to the
successful execution of an API call. From the historical API calls,
we can infer an automaton as the behavior model of smart contract.

Definition 2.2 (Behavior Model Mining). For a smart contract, let
C be the set of all valid traces of interaction with its API. Given a set
of API calls and its observed finite traces T ⊆ C, find an automaton
A that can generate exactly/approximately the same traces in C.

Generally, A is an abstraction that over-approximates T . The
automaton A is a minimal existential abstraction [7] as follows.

Table 1: Statistics about the detected ERC20 invariants.

Invariants bookkeeping transfer approve transferFrom
1○ 2○ 3○ 4○ 5○

Contracts 126 46 25 51 2 10 6
TPs 126 42 24 51 2 10 6

Precision 100% 91.3% 96% 100% 100% 100% 100%

Definition 2.3 (Minimal Existential Abstraction). An automaton
A = (𝑆0, 𝑆,Λ,𝑇) is the minimal existential abstraction of T =

(S0, S,Λ, T) with respect to an abstraction function 𝛼 : 𝑆 → 𝑆 iff
∃ 𝑠 ∈ 𝑆0 . 𝛼 (𝑠) = 𝑠 ⇐⇒ 𝑠 ∈ 𝑆0 and ∃ (𝑠, 𝑒, 𝑠′) ∈ 𝑇 . 𝛼 (𝑠) =

𝑠 ∧ 𝛼 (𝑠′) = 𝑠′ ⇐⇒ (𝑠, 𝑒, 𝑠′) ∈ 𝑇 . where S is a set of states and
S0 ⊆ 𝑆 is a set of initial states; Λ is a set of events, namely, API
calls, and T ⊆ S × Λ × S is a relation of labeled transitions, and the
definitions are similar for 𝑆0, 𝑆 and 𝑇 .

2.4 Invariant Detection
Existing invariant detection approaches do not apply to smart con-
tracts in that they require code instrumentation while executing a
test suite dynamically to collect data traces. Due to the gas mecha-
nism on blockchain, the instrumented smart contracts may behave
different from the original one. In addition, few test cases exist for
smart contracts, which barely cover any interesting invariant.

The proposed dynamic invariant detection technique [15] is built
on Daikon [3] and we use a heuristic-based approach to recover
execution traces from transaction history efficiently. The data avail-
ability on blockchain contributes to a set of execution traces caused
by real world users sending contract transactions to blockchain.
Each execution trace comprises the input and output to a contract
transaction. Moreover, our invariant detection technique finds pro-
gram invariants with a set of predefined or customized invariant
templates that are unique in smart contracts.

3 RESULTS
In this section, we present the preliminary results on invariant
detection. We evaluated the precision of the mined invariants on
246 real world ERC20 contracts. Table 1 shows statistics about
the detected invariants, which cover seven standard ERC20 invari-
ants: bookkeeping [28] and two transfer function invariants, one
approve function invariant and three transferFrom function in-
variants [8]. The first row (“# Contracts”) shows the number of
contracts detected with the corresponding invariants. The second
(“# TPs) and third (“Precision”) rows list the number of true posi-
tives and the result precision. We successfully detected at least one
ERC20 invariants in 141 unique contracts. Further, we manually
construct the ground-truth whether these contracts are in line with
the ERC20 standard. Overall, the results are of high accuracy.

4 CONCLUSION
In this work, we propose a unified specification mining framework
to learn smart contract access control model [15], program invari-
ant [16], and behavior model based on past transaction histories.

ACKNOWLEDGMENTS
This research is supported by the Singapore National Research Foun-
dation under the National Satellite of Excellence in Mobile Systems
Security and Cloud Security (NRF2018NCR-NSOE004-0001).

A Unified Specification Mining Framework for Smart Contracts ASE ’22, October 10–14, 2022, Rochester, MI, USA

REFERENCES
[1] 2015. EIP-20: A standard interface for tokens. https://eips.ethereum.org/EIPS/eip-

20.
[2] 2020. Etherscan. https://etherscan.io.
[3] 2021. Daikon. http://plse.cs.washington.edu/daikon/. The Daikon invariant

detector.
[4] 2021. State of The DApps. https://www.stateofthedapps.com/zh/platforms/

ethereum.
[5] 2022. OpenZeppelin. https://github.com/OpenZeppelin/openzeppelin-contracts.

OpenZeppelin contracts.
[6] Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea.

2020. Behavioral simulation for smart contracts. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation. 470–
486.

[7] Pankaj Chauhan, Edmund Clarke, James Kukula, Samir Sapra, Helmut Veith, and
Dong Wang. 2002. Automated abstraction refinement for model checking large
state spaces using SAT based conflict analysis. In International Conference on
Formal Methods in Computer-Aided Design. Springer, 33–51.

[8] Ting Chen, Yufei Zhang, Zihao Li, Xiapu Luo, Ting Wang, Rong Cao, Xiuzhuo
Xiao, and Xiaosong Zhang. 2019. Tokenscope: Automatically detecting inconsis-
tent behaviors of cryptocurrency tokens in ethereum. In Proceedings of the 2019
ACM SIGSAC conference on computer and communications security. 1503–1520.

[9] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
review of automated analysis tools on 47,587 Ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd International conference on software engineering.
530–541.

[10] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[11] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[12] Padmavathi Iyer and AmirrezaMasoumzadeh. 2018. Mining positive and negative
attribute-based access control policy rules. In Proceedings of the 23nd ACM on
Symposium on Access Control Models and Technologies. 161–172.

[13] Bo Jiang, Ye Liu, and WK Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 259–269.

[14] Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing smart contract with
runtime validation. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 438–453.

[15] Ye Liu and Yi Li. 2022. InvCon: A Dynamic Invariant Detector for Ethereum
Smart Contracts. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering (ASE).

[16] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. 2022. Finding Permission Bugs
in Smart Contracts with Role Mining. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). ACM, New
York, NY, USA, 716–727.

[17] Ye Liu, Yi Li, Shang-Wei Lin, and Qiang Yan. 2020. ModCon: A Model-Based Test-
ing Platform for Smart Contracts. In Proceedings of the 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (FSE).

[18] Ye Liu, Yi Li, Shang-Wei Lin, and Rong Zhao. 2020. Towards automated verifica-
tion of smart contract fairness. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 666–677.

[19] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. 2008. Automatic gen-
eration of software behavioral models. In Proceedings of the 30th international
conference on Software engineering. 501–510.

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[21] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-
friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186–1189.

[22] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[23] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. Verx: Safety verification of smart contracts. In 2020 IEEE
symposium on security and privacy (SP). IEEE, 1661–1677.

[24] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking
the defi ecosystem with flash loans for fun and profit. In International Conference
on Financial Cryptography and Data Security. Springer, 3–32.

[25] Ravi Sandhu, David Ferraiolo, Richard Kuhn, et al. 2000. The NIST model for role-
based access control: towards a unified standard. In ACM workshop on Role-based
access control, Vol. 10.

[26] David Siegel. 2016. Understanding The DAO Attack. https://www.coindesk.com/
understanding-dao-hack-journalists

[27] Solidity 2018. Solidity. https://solidity.readthedocs.io/en/v0.5.1/.
[28] Haijun Wang, Yi Li, Shang-Wei Lin, Lei Ma, and Yang Liu. 2019. VULTRON:

Catching Vulnerable Smart Contracts Once and for All. In Proceedings of the 41st
International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE Press, 1–4.

[29] Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody
Born, Immad Naseer, and Kostas Ferles. 2019. Formal verification of workflow
policies for smart contracts in azure blockchain. InWorking Conference on Verified
Software: Theories, Tools, and Experiments. Springer, 87–106.

[30] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Ethereum project yellow paper 151 (2014), 1–32.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://etherscan.io
http://plse.cs.washington.edu/daikon/
https://www.stateofthedapps.com/zh/platforms/ethereum
https://www.stateofthedapps.com/zh/platforms/ethereum
https://github.com/OpenZeppelin/openzeppelin-contracts
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://solidity.readthedocs.io/en/v0.5.1/

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Role Mining
	2.3 Automata Learning
	2.4 Invariant Detection

	3 Results
	4 conclusion
	Acknowledgments
	References

