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ABSTRACT
Smart contracts are self-governed computer programs that run on
blockchain to facilitate asset transfer between users within a trust-
less environment. The absence of contract specifications hinders
routine tasks, such as program understanding, debugging, testing,
and verification of smart contracts. In this work, we propose a
unified specification mining framework to infer specification mod-
els from past transaction histories. These include access control
models describing high-level authorization rules, program invari-
ants capturing low-level program semantics, and behavior models
characterizing interaction patterns allowed by contract implemen-
tations. The extracted specification models can be used to perform
conformance checking on smart contracts, with the goal of elimi-
nating unforeseen contract quality issues.

CCS CONCEPTS
• Software and its engineering → Software reverse engineer-
ing.
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1 INTRODUCTION
Blockchain is a distributed ledger technology, which is maintained
and shared by a peer-to-peer (P2P) network. Blockchain was first
introduced by Bitcoin [22] and then evolves on Ethereum [30] to
support smart contract execution. Smart contracts are developed to
facilitate digital asset transfer between users without a centralized
authority and they are usually written in a Turing complete pro-
gramming language such as Solidity [27]. Smart contracts have em-
powered a wide range of applications such as decentralized finance,
games, NFT art markets, and so on. As of July 2022, there are more
than 50 millions smart contracts deployed on Ethereum, enabling
4,073 DApps with 54.85k daily users [2, 4]. Since the notorious DAO
attack [26] in 2016, smart contract security has always been the
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research focus. Although many approaches [11, 13, 20, 21] have
been proposed to secure smart contract, it remains a big challenge
to ensure the correctness with the absence of contract specification.

Smart contracts are often developed in a rather undisciplined
way. To protect assets, smart contracts tend to restrict user access
by the enforcement of access control. However, Durieux et al. [9]
reported that nearly 10% smart contracts may contain access con-
trol vulnerabilities. ERC20 [1] is the most popular kind of smart
contracts on Ethereum but 13% ERC20 token contracts do not con-
form to the ERC20 standard semantics [8]. Moreover, Qin et al. [24]
demonstrated how behavior models can be exploited to attack the
DeFi ecosystem with flash loans. Contract specification plays a
central role in describing, understanding, reasoning about smart
contract behaviors, and detecting, through testing and verification,
nonconformances such as correctness bugs and security violations.

There are a large body of works on specification mining. Ernst
et al. [10] implemented Daikon [3] to automatically infer likely
program invariants. Further, GK-tail [19] can automatically gener-
ate extended finite state machines (EFSMs) as software behavior
models from runtime traces. Moreover, Iyer and Masoumzadeh [12]
proposed an algorithm for mining attribute-based access control
(ABAC) policies, discovering both positive and negative authoriza-
tion rules simultaneously. However, there does not exist a general
framework to guide the specification mining of smart contracts.

To address this problem, we propose a unified specification min-
ing framework for smart contracts. We discuss the static artefacts
and dynamic artefacts from smart contracts and its transaction his-
tory. From these artefacts, then, three different specification mining
techniques: (1) role mining, (2) automata learning, and (3) invariant
detection, are used to generate access control model, behavior model,
and program invariant, respectively. Role-based access control [25]
has been recommended by Openzeppelin [5] as the permission
management paradigm for smart contract development. The mined
access control models can be used to find permission bugs in smart
contract implementations [16]. Program invariant are properties
that must be preserved through the program execution. Program
invariant can be used for fuzzing [28], verification [18, 23], and run-
time validation [14]. Behavior model characterizes the interaction
patterns allowed or expected by smart contract implementations.
The behavior models can be used for conformance testing [17, 29].

2 APPROACH
2.1 Overview
Figure 1 overviews the proposed unified specification mining frame-
work for smart contracts. The framework takes smart contracts and
its transaction history as the input to generate static artefacts and
dynamic artefacts. The static artefacts are minimal which include
the application binary interface (ABI) specifications and contract
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Figure 1: A unified specification mining framework.
storage layout specifications [27]. The dynamic artefacts include
users, API calls and execution traces. Note that users follow the ABI
specifications to call smart contract API which are public ABI func-
tions, and the execution of API calls would modify contract state
variables, thus contributing to a set of execution traces. Next, speci-
fication mining engine ensembles three techniques: (1) role mining,
(2) automata learning, and (3) invariant detection to infer access
control model, behavior model, and program invariant respectively
and these will be outputted as the likely contract specifications.

2.2 Role Mining
Role mining mainly aims to address role engineering or role identi-
fication problem in applying RBAC and it discovers a set of roles
from existing user access log that reflects user permission assign-
ment. Most existing role mining techniques assume a complete
user access log that contains all permissions assigned to each user.
However, transaction histories of smart contracts are limited and
treating it as a source of a fully-observed permission assignment
will likely result in more roles than necessary and incorrect role as-
signments. In this section, we introduce the partial-observation role
mining problem (PORM), where the given permission assignment is
assumed to contain only partial information.

Definition 2.1 (PORM Optimization Problem). Given a set of users
𝑈 of size𝑚, a set of permissions P of size 𝑛, and a user-permission
assignment matrix UPA of size𝑚×𝑛, PORM is to infer the unknown
RBAC configuration (UA, PA), where R is a set of roles of size 𝑘 ,
UA is a user-role assignment matrix of size 𝑚 × 𝑘 , and PA is a
permission-role assignment matrix of size 𝑘 × 𝑛, which satisfies,

min 𝛼 · max
𝑟𝑖 ,𝑟 𝑗 ∈𝑅

cos
(
AFV (𝑟𝑖 ),AFV (𝑟 𝑗 )

)
+ 𝛽 · | |UA ⊗ PA − UPA| |1

| |UA ⊗ PA| |1
,

s.t. UA ⊗ PA ⊇ UPA, (1)

where 𝛼 and 𝛽 are relative weights on the two error metrics and
𝐴𝐹𝑉 is the role average access frequency vector proposed in [16].

2.3 Automata Learning
Contract behaviors can be modeled by a labeled state transition
system [6]. A contract state transitions to another state due to the
successful execution of an API call. From the historical API calls,
we can infer an automaton as the behavior model of smart contract.

Definition 2.2 (Behavior Model Mining). For a smart contract, let
C be the set of all valid traces of interaction with its API. Given a set
of API calls and its observed finite traces T ⊆ C, find an automaton
A that can generate exactly/approximately the same traces in C.

Generally, A is an abstraction that over-approximates T . The
automaton A is a minimal existential abstraction [7] as follows.

Table 1: Statistics about the detected ERC20 invariants.

Invariants bookkeeping transfer approve transferFrom
1○ 2○ 3○ 4○ 5○

# Contracts 126 46 25 51 2 10 6
# TPs 126 42 24 51 2 10 6

Precision 100% 91.3% 96% 100% 100% 100% 100%

Definition 2.3 (Minimal Existential Abstraction). An automaton
A = (𝑆0, 𝑆,Λ,𝑇 ) is the minimal existential abstraction of T =

(S0, S,Λ, T ) with respect to an abstraction function 𝛼 : 𝑆 → 𝑆 iff
∃ 𝑠 ∈ 𝑆0 . 𝛼 (𝑠) = 𝑠 ⇐⇒ 𝑠 ∈ 𝑆0 and ∃ (𝑠, 𝑒, 𝑠′) ∈ 𝑇 . 𝛼 (𝑠) =

𝑠 ∧ 𝛼 (𝑠′) = 𝑠′ ⇐⇒ (𝑠, 𝑒, 𝑠′) ∈ 𝑇 . where S is a set of states and
S0 ⊆ 𝑆 is a set of initial states; Λ is a set of events, namely, API
calls, and T ⊆ S × Λ × S is a relation of labeled transitions, and the
definitions are similar for 𝑆0, 𝑆 and 𝑇 .

2.4 Invariant Detection
Existing invariant detection approaches do not apply to smart con-
tracts in that they require code instrumentation while executing a
test suite dynamically to collect data traces. Due to the gas mecha-
nism on blockchain, the instrumented smart contracts may behave
different from the original one. In addition, few test cases exist for
smart contracts, which barely cover any interesting invariant.

The proposed dynamic invariant detection technique [15] is built
on Daikon [3] and we use a heuristic-based approach to recover
execution traces from transaction history efficiently. The data avail-
ability on blockchain contributes to a set of execution traces caused
by real world users sending contract transactions to blockchain.
Each execution trace comprises the input and output to a contract
transaction. Moreover, our invariant detection technique finds pro-
gram invariants with a set of predefined or customized invariant
templates that are unique in smart contracts.

3 RESULTS
In this section, we present the preliminary results on invariant
detection. We evaluated the precision of the mined invariants on
246 real world ERC20 contracts. Table 1 shows statistics about
the detected invariants, which cover seven standard ERC20 invari-
ants: bookkeeping [28] and two transfer function invariants, one
approve function invariant and three transferFrom function in-
variants [8]. The first row (“# Contracts”) shows the number of
contracts detected with the corresponding invariants. The second
(“# TPs) and third (“Precision”) rows list the number of true posi-
tives and the result precision. We successfully detected at least one
ERC20 invariants in 141 unique contracts. Further, we manually
construct the ground-truth whether these contracts are in line with
the ERC20 standard. Overall, the results are of high accuracy.

4 CONCLUSION
In this work, we propose a unified specification mining framework
to learn smart contract access control model [15], program invari-
ant [16], and behavior model based on past transaction histories.
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